Strategic Command, Control, Communications, Computer Intelligence, Surveillance (C4ISR) to Operationalize the Stratosphere (SCOS) Prototype Project

Update 9.4.2020:

Due to end of government fiscal year shifts, this project is now projected to be released in FY21.

The Department of Defense (DoD) desires to enhance strategic mission capabilities by exploring Machine Learning (ML) and Artificial Intelligence (AI) to enhance autonomous stratospheric technology. Since 2006, the DoD has invested in stratospheric platforms, sensor technologies, and payloads. Developmental testing in the last five years has been focused on operationalizing the stratosphere by demonstrating a higher Operational Tempo (OPTEMPO) with persistent, long-duration stratospheric balloons and solar UAS. These platforms offer the opportunity to enhance the mission for persistent operations in non-permissive environments.

As part of the DoD stratospheric platform operations, platforms have the potential to complement traditional data collection in the areas of:

  • Earlier Intelligence and Warning
  • ¬†Intelligence, Surveillance, and Reconnaissance (ISR)
  • Position, Navigation, and Timing (PNT) pseudolite, airborne communication
  • Node, and information crosslink
  • Maritime and land domain awareness, moving target indicator
  • Mitigation of degraded space-based capabilities

Past DoD investment and experimentation have determined that Stratospheric Balloons and Solar UAS are complementary platforms that serve different purposes in an intelligence framework. Balloons are mature platforms that can carry heavier payloads than UAS. They maneuver by changing altitudes to various wind layers to stay in an operating area. Solar UASs are optimized for electric powered propeller propulsion in the thin atmosphere of the stratosphere. Solar UAS have low payload capacity, but the ability to maneuver and station keep. Operationalizing high altitude, persistent ISR may be best optimized with combined balloon and UAS operations.

Candidate sensor payloads have been derived from manned aircraft, satellite, and tactical UAS systems. In the past decade, DoD technology efforts have focused on evaluating traditional ISR sensors and Comms payloads in size, weight, and power (SWaP) required for stratospheric operations. Candidate sensor/Comms payloads are: Communications Relay, Signals Intelligence (SIGINT), Synthetic-Aperture Radio (SAR), Electro-Optical/Infra-Red (EO/IR), and Moving Target Indication (MTI). Advancing these technologies and integrating them onto stratospheric platforms is a key tenant of SCOS. Autonomous stratospheric technologies must be advanced in order to compete with peer/near-peer adversaries. Currently, stratospheric platforms and payloads are a mix of mature and developmental technologies. The DoD has determined that additional experimentation is necessary to rapidly advance and integrate stratospheric technologies to improve OPTEMPO.

Learn more about the S2MARTS OTA.